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ABSTRACT 
Cosine and Sine (CAS) wavelet collocation method for the numerical solution of Volterra, Fredholm integral 

and integro-differential equations, mixed Volterra-Fredholm integral equations. The method is based Cosine and 

Sine (CAS) wavelet approximations. The Cosine and Sine (CAS) wavelet is first presented and the resulting 

Cosine and sine wavelet matrices are utilized to reduce the integral and integro-differential equations into a 

system of algebraic equations, which is the required Cosine and Sine (CAS) coefficients, are computed using 

Matlab. The technique is tested on some numerical examples and compared with the exact and existing methods 

(i.e., Hermite, Legendre and Bernoulli Wavelet). Error analysis is worked out, which shows efficiency of the 

proposed scheme. 

 

KEYWORDS: Cosine and Sine (CAS) wavelet, Collocation method, Integral equations, Integro-differential 

equations. 

 

 

I. INTRODUCTION 
Integral and integro-differential equations found its applications in several fields of science and engineering. 

There are some numerical methods for approximating the solution of integral and integro-differential equations 

of second kind are known and many basis functions have been used [1]. Delves and Mohammed [2] have 

introduced the computational methods for solving integral equations. In recent years, wavelets have established 

many different fields of science and engineering. Applications of different wavelets have been introduced for 

solving integral and integro-differential equations. Wavelets theory is a relatively new and an emerging tool in 

applied mathematical research area. It has been applied in a wide range of engineering disciplines; particularly, 

signal analysis for waveform representation and segmentations, time-frequency analysis and fast algorithms for 

easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. 

Moreover, wavelets establish a connection with fast numerical algorithms [3, 4]. Since 1991 the various types of 

wavelet method have been applied for the numerical solution of different kinds of integral equations, a detailed 

survey on these papers can be found in [5]. Namely, Lepik and Tamme [6-11] applied the Haar wavelet method. 

Maleknejad et al. [12-16] has introduced rationalized haar wavelets, Legendre wavelets, Hermite cubic spline 

wavelet, Coifman wavelet. Babolian et. al [17] have applied chebyshev wavelet operational matrix of 

integration. Galerkin method for the constructions of orthonormal wavelet bases approached by Liang et.al [18]. 

Yousefi et al. [19] have introduced a new cosine and sine wavelet. Shiralashetti and Mundewadi [24] introduced 

Bernoulli wavelet method for solving Fredholm integral equations. In this paper, we introduced a new approach 

for solving integral and integro-differential equations using cosine and sine (CAS) wavelet. 

 

II. PROPERTIES OF COSINE AND SINE (CAS) WAVELETS  
Wavelets 

Recently, wavelets based numerical methods applied extensively for signal processing and physics research has 

proved to be an amazing mathematical tool. Wavelets can be used for algebraic manipulations in the system of 

equations obtained better resulting system. Wavelets constitute a family of functions constructed from dilation 
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and translation of a single function called the mother wavelet. When the dilation parameter ‘a’ and the 

translation parameter ‘b’ vary continuously, we have the following family of continuous wavelets [19];
 

1
2

, ( ) , , , 0a b

t b
t a a b R a

a
 

  
   

 
    (2.1)  

If we restrict the parameters a and b to discrete values as 0 0 0 0 0, , 1, 0k ka a b pb a a b      and p, and k 

positive integer, from Eq. (2.1) we have the following family of discrete wavelets: 
1
2

, 0 0( ) ( )k

k p t a a t pb 


 
 

where 
, ( )k p t form a wavelet basis for 

2 ( )L R . In particular, when 0 2a 
 
and 0 1b  , then 

, ( )k p t forms 

an orthonormal basis.  

 

Cosine and Sine (CAS) Wavelet  

Cosine and Sine wavelet
, ( ) ( , , , )n mC t C k n m t have four arguments; 1,2,3,...,k  1,2,3,..., 2 ,kn 

0, 1, . . ., 1m M   and t  is the normalized time.  

For any positive integer k , the cosine and sine wavelets family is defined in the interval     [0, 1) as follows; 

              

/2

,   

1
2 (2 ),

( ) 2 2

0,
n

k k

m k
m

k

n n
CAS t n for t

t

Otherwise

C


  




 

    

(2.2) 

where ( ) cos(2 ) sin(2 ).mCAS t m t m t    

Equivalently, by computational procedure for any positive integer k , the CAS wavelets family is defined as 

follows; 

/2

 

1
2 (2 ),

( ) 2 2

0,

 

k k

m k k
i

n n
CAS t n for t

t

Otherwise

C





 



          

 (2.3) 

where 2ki n m  . By varying the values of i  with respect to the collocation points

0.5
, 1,2, ,j

j
j Nt

N


   , we get the CAS wavelet matrix of order N N , where 2 .kN M  

For k = 1 implies n = 1, 2 and M = 3 implies m = 0, 1, 2 then Eq. (2.2) gives the CAS wavelet matrix of order (N 

= 2k M) 6x6 as, 

6 6

1.4142    1.4142    1.4142         0             0            0

1.9319   -1.4142   -0.5176         0             0            0

0.5176    1.4142   -1.9319         0             0            0

    0 
C  

             0             0        1.4142    1.4142    1.4142

    0              0             0        1.9319   -1.4142   -0.5176

    0              0             0        0.5176    1.4142   -1.9319






 
 
 
 
 
 
 



 

For k = 1 and M = 4 of order 8x8 as, 
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8 8

1.4142    1.4142    1.4142    1.4142         0              0             0             0

2.0000    -0.0000   -2.0000   0.0000         0             0             0             0

1.4142   -1.4142  

C  

  1.4142   -1.4142         0             0             0             0

0.0000    2.0000    0.0000   -2.0000         0             0             0             0

     0             0             0             0         1.4142    1.4142    1.4142    1.4142

     0             0             0             0         2.0000    -0.0000   -2.0000   0.0000

     0             0             0             0         1.4142   -1.4142    1.4142   -1.4142

     0             0             0             0         0.0000    2.0000     0.0000   -2.0000

 
 
 
 
 
 
 
 
 
 
 
  

 

 

III. COSINE AND SINE (CAS) WAVELET COLLOCATION METHOD OF SOLUTION 
In this section, we present a Cosine and sine wavelet (CAS) collocation method for solving integral and integro-

differential equations, 

 

Integral Equations 

 

Fredholm Integral equations 

Consider the Fredholm integral equations, 
1

1

0

( ) ( ) ( , ) ( ) ,u t f t k t s u s ds       (3.1) 

where 
2 2

1( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t , and 
1( , )k t s by using the collocation points it  as given in the above section 

2.2. Then the numerical procedure as follows:   

STEP 1: Let us first approximate ( ) ( )Tf t X t; and ( ) ( ),Tu t Y t;               (3.2) 

Let the function 
2( ) [0,1]f t L may be expanded as: 

, ,

1 0

( ) ( ),n m n m

n m

f t x C t
 

 

  
    (3.3) 

where 

                     , ,( ( ), ( )).n m n mx f t C t                       (3.4) 

In (3.4), (. , .) denotes the inner product. 

If the infinite series in (3.3) is truncated, then (3.3) can be rewritten as: 
12 1

, ,

1 0

( ) ( ) ( ),

k M
T

n m n m

n m

f t x C t X t

 

 

       (3.5) 

where X and ( )t are 1N matrices given by: 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1

1 2 2

[ , ,..., , ,..., ,..., ,..., ]

[ , ,..., ] ,

k k

k

T

M M M

T

M

X x x x x x x x

x x x

 



  



   (3.6) 

and 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1

1 2 2

( ) [ ( ), ( ),..., ( ), ( ),..., ( ),..., ( ),..., ( )]

[ ( ), ( ),..., ( )] .

k k

k

T

M M M

T

M

t C t C t C t C t C t C t C t

C t C t C t

 



  
 


  

(3.7) 

STEP 2: Next, approximate the kernel function as: 
2

1( , ) ([0,1] [0,1])k t s L   
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     1 1( , ) ( ) ( ),Tk t s t K s ;
         

(3.8) 

where 1K  is 2 2k kM M matrix, with  

         1 1[ ] ( ( ),( ( , ), ( ))).ij i jK C t k t s C s
 

i.e.,    
1 1

1 1( ) ( , ) ( )TK t k t s s
 

     ;
         (3.9) 

STEP 3: Substituting Eq. (3.2) and Eq. (3.8)
 
in Eq. (3.1), we have:

 

 

1

1
0

1

1
0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 Then we get a system of equations as, 

1( ) .I K Y X         (3.10) 

By solving this system obtain the vector CAS wavelet coefficients ‘Y’ and substituting in   step 4.  

STEP 4: ( ) ( )Tu t Y t;
 

 

This is the required approximate solution of Eq. (3.1). 

 

Volterra Integral equations 

Consider the Volterra integral equations with convolution but non-symmetrical kernel 

2

0

( ) ( ) ( , ) ( ) , [0,1]

t

u t f t k t s u s ds t        (3.11) 

where 
2 2

2( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t , and 
2 ( , )k t s by using the collocation points it  as given in the above section 

2.2. Then the numerical procedure as follows:   

STEP 1: The Eq. (3.11) can be rewritten in Fredholm integral equations, with a modified kernel 2 ( , )k t s%
 and 

solved in Fredholm form [20] as, 

2

0

( ) ( ) ( , ) ( ) ,

t

u t f t k t s u s ds   %     (3.12) 

where, 
2

2

( , ), 0
( , )

0, 1.

k t s s t
k t s

t s

 
 

 

%

 

STEP 2:  Let us first approximate ( )f t and ( )u t  as given in Eq. (3.2), 

STEP 3:  Next, we approximate the kernel function as: 
2

2 ( , ) ([0,1] [0,1])k t s L %
 

         2 2( , ) ( ) ( ),Tk t s t K s  % ;
            

(3.13) 

where 2K  is 2 2k kM M matrix, with  

2 2( ) ( ( ), ( ( , ), ( ))).ij i jK C t k t s C s %
 

i.e.,  
1 1

2 2( ) ( , ) ( )TK t k t s s
 

        
%;

       (3.14) 

STEP 4: Substituting Eq. (3.2) and Eq. (3.13)
 
in Eq. (3.12), we have:
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 

1

2
0

1

2
0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 Then we get a system of equations as, 

2( ) .I K Y X         (3.15)

 

By solving this system obtain the vector CAS wavelet coefficients ‘Y’ and substituting in   step 5.  

STEP 5: ( ) ( )Tu t Y t;
 

This is the required approximate solution of Eq. (3.11). 

 

Fredholm-Volterra integral equations 

Consider the Fredholm-Volterra integral equation of the second kind, 
1

1 2

0 0

( ) ( ) ( , ) ( ) ( , ) ( ) ,

t

u t f t k t s u s ds k t s u s ds                               (3.16) 

where 2 2

1 2[0,1), and ([0,1) [0,1))f L k k L    are known function and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t ,
1 2( , )and ( , )k t s k t s by using the collocation points as follows:  

STEP 1:  Let us first approximate ( )f t and ( )u t  as given in Eq. (3.2), 

STEP 2: Substituting Eq. (3.2), Eq. (3.9) and Eq. (3.14) in Eq. (3.16), we get a system of N equations with N 

unknowns,
 

i.e., 
1 2( ) .I K K Y X        (3.17) 

where, I is an identity matrix. 

By solving this system we obtain the CAS wavelet coefficient ‘Y’ and substituting ‘Y’ in   step 3. 

STEP 3: ( ) ( )Tu t Y t;                     

This is the required approximate solution of Eq. (3.16). 

 

Integro-differential Equations 

 

Fredholm Integro-differential equations 

In this section, we concerned about a technique that will reduce Fredholm integro-differential equation to an 

equivalent Fredholm integral equation. This can be easily done by integrating both sides of the integro-

differential equation as many times as the order of the derivative involved in the equation from 0 to t for every 

time we integrate, and using the given initial conditions. It is worth noting that this method is applicable only if 

the Fredholm integro-differential equation involves the unknown function u(t) only, and not any of its 

derivatives, under the integral sign [1].  

Consider the Fredholm integro-differential equations, 
1

( ) ( )

1

0

( ) ( ) ( , ) ( ) , ,n l

lu t f t k t s u s ds u b       (3.18) 

where 2 2

1( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and 
( ) ( )nu t is an unknown function.  

 

where 
( ) ( )nu t  is the nth derivative of ( )u t  with respect to t and 

lb  are constants that define the initial 

conditions. 

 

Let us first, we convert the Fredholm integro-differential equation into Fredholm integral equation, then we 

reduce it into a system of algebraic equations as given in Eq. (3.10), using this system we solve the Eq. (3.18). 
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Volterra Integro-differential equations 

In this section, we concerned with converting to Volterra integral equations. We can easily convert the Volterra 

integro-differential equation to equivalent Volterra integral equation, provided the kernel is a difference kernel 

defined by k(t, s) = k(t − s). This can be easily done by integrating both sides of the equation and using the initial 

conditions. To perform the conversion to a regular Volterra integral equation, we should use the well-known 

formula, which converts multiple integrals into a single integral [1].  

i.e., 

1

0 0 0 0

1
........ ( ) ( ) ( )

( 1)!

t t t t

n nu t dt t s u s ds
n

 
     

Consider the Volterra integro-differential equations, 

( ) ( )

2

0

( ) ( ) ( , ) ( ) , ,

t

n l

lu t f t k t s u s ds u b           (3.19) 

where 
2 2

2( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and 
( ) ( )nu t is an unknown function.  

where 
( ) ( )nu t  is the nth derivative of ( )u t  with respect to t and 

lb  are constants that define the initial 

conditions. 

 

Let us first, we convert the Volterra integro-differential equation into Volterra integral equation, then we reduce 

it into a system of algebraic equations as given in Eq. (3.15), using this system we solve the Eq. (3.19). 

 

IV. CONVERGENCE ANALYSIS 

Theorem: The series solution , ,1 0
( ) ( )p q p qp q

u t x C t
 

 
  defined in Eq. (3.5) using CAS wavelet method 

converges to ( )u t as given in [21].  

Proof: Let 
2 ( )L R be the Hilbert space and 

,p qC  defined in Eq. (3.2) forms an orthonormal basis. 

Let 
1

, ,0
( ) ( )

M

p i p ii
u t x C t




 where , ,( ), ( )p i p ix u t C t for a fixed .p  

Let us denote 
, ( ) ( )p iC t C t and let ( ), ( ) .j u t C t   

Now we define the sequence of partial sums 
pS of ( ( ));j jC t Let 

pS  and 
pS be the partial sums with .p q  

We have to prove 
pS  is a Cauchy sequence in Hilbert space. 

Let 
1

( ).
p

p j ji
S C t


  

Now 
2

1 1

( ), ( ), ( ) .
p p

p j j j

i j

u t S u t C t 
 

    

We claim that 
2 2

1

, .
p

p p j

j q

S S p q
 

    

Now 
2

2

1 1 1 1

( ) ( ), ( ) , .
p p p p

j j j j j j j

j q j q j q j q

C t C t C t for p q   
       

       

Therefore,   

2

2

1 1

( ) , .
p p

j j j

j q j

C t for p q 
  

    

From Bessel’s inequality, we have 
2

1

p

jj


 is convergent and hence 
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2

1

( ) 0 ,
p

j j

j q

C t as q p
 

   

So, 

1

( ) 0
p

j j

j q

C t
 

  and  pS  is a Cauchy sequence and it converges to s (say). 

We assert that ( ) .u t s  

Now ( ), ( ) , ( ) ( ), ( ) lim , ( )j j j p j j j j
p

s u t C t s C t u t C t S C t   


      
,

 

This implies, 

( ), ( ) 0js u t C t   

Hence ( )u t s  and 
1

( ).
p

j ji
C t

  converges to ( )u t  as p   and proved. 

 

V. NUMERICAL EXPERIMENTS 
In this section, we present CAS wavelet collocation method for the numerical solution of integral and integro-

differential equation in comparison with existing methods (i.e., Haar Wavelet (HW) [5], Legendre Wavelet 

(LW) [14], Bernoulli Wavelet (BW) [24]) to demonstrate the capability of the proposed method and error 

analysis are shown in tables and figures. Error function is presented to verify the accuracy and efficiency of the 

following numerical results:  

 
2

max

1

( ) ( ) ( ) ( )
n

e i a i e i a i

i

E Error function u t u t u t u t




      

where
 
𝑢𝑒 and

 
𝑢𝑎 are the exact and approximate solution respectively. 

 

Example 5.1 Let us consider the Fredholm integral equation of the second kind [13], 
1

0

( ) ( , ) ( )u t t k t s u s ds   ,  0 1t        (5.1) 

which has the exact solution ( ) sec(1)sin( ).u t t
 
Where ( )f t t  and 1

,
( , )

, .

t t s
k t s

s s t


 


 

Firstly, we approximate ( ) ( ),Tf t X t; and ( ) ( ),Tu t Y t;   

Next, approximate the kernel function as: 2

1( , ) ([0,1] [0,1])k t s L 
 

  1 1( , ) ( ) ( ),Tk t s t K s ;         
 

where 1K  is 2 2k kM M  matrix, with 
1 1[ ] ( ( ),( ( , ), ( ))).ij i jK H t k t s H s

 

   
1 1

1 1( ) ( , ) ( )TK t k t s s
 

     ;
 

 Next, substituting the function ( )f t , ( )u t , and 1( , )k t s in Eq. (5.1), then using the collocation points, we 

get the system of algebraic equations with unknown coefficients for     k  = 1 and M = 4 (N = 8), as an order 

8 8  as follows:
 

 

1

1
0

1

1
0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   




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1( ) ,I K Y X    where,
1

0
( ) ( )TI s s ds    is the identity matrix.

 

where, X = [0.1768   -0.0625   -0.0442   -0.0625    0.5303   -0.0625   -0.0442   -0.0625],  

1

    0.0859   -0.0276   -0.0156   -0.0166    0.1250   -0.0000    0.0000    0.0000

   -0.0276    0.0156    0.0055    0.0078   -0.0442    0.0000   -0.0000   -0.0000

   -0.0156    0.0055    0.0078    0.0

K 

055   -0.0312    0.0000   -0.0000   -0.0000

   -0.0166    0.0078    0.0055    0.0156   -0.0442    0.0000   -0.0000   -0.0000

    0.1250   -0.0442   -0.0312   -0.0442    0.3359   -0.0276   -0.0156   -0.0166

   -0.0000    0.0000    0.0000    0.0000   -0.0276    0.0156    0.0055    0.0078

    0.0000   -0.0000   -0.0000   -0.0000   -0.0156    0.0055    0.0078    0.0055

    0.0000   -0.0000   -0.0000   -0.0000   -0.0166    0.0078    0.0055    0.0156

 
 
 
 
 
 
 
 
 
 
 
  

 

 

By solving this system of equations, we obtain the CAS wavelet coefficients, 

Y = [0.3212   -0.1135   -0.0787   -0.1100    0.8847   -0.0893   -0.0594   -0.0794]  

and substituting these coefficients in ( ) ( ),Tu t Y t   we get the approximate solution ( )u t are shown in 

table 1. Maximum Error analysis is shown in table 2 and compared with existing methods.   
 

Table 1: Numerical results of the example 5.1 

t Exact CAS Wavelet 

0.0625 0.1156 0.1158 

0.1875 0.3450 0.3456 

0.3125 0.5690 0.5699 

0.4375 0.7841 0.7854 

0.5625 0.9870 0.9886 

0.6875 1.1745 1.1764 

0.8125 1.3437 1.3457 

0.9375 1.4919 1.4941 

 

Table 2: Maximum error analysis of the example 5.1 

N max (HW)E
 max (LW)E

 max (BW)E  max (CAS)E
 

8 5.15e-02 8.67e-03 4.34e-03 2.18e-03 

16 1.39e-02 1.21e-03 1.07e-03 5.52e-04 

32 3.59e-03 2.77e-04 2.68e-04 1.38e-04 

64 9.07e-04 6.77e-05 6.72e-05 3.47e-05 

128 2.27e-04 1.68e-05 1.68e-05 8.70e-06 

 

Example 5.2 Next, consider [15], 
1

0
( ) sin(2 ) cos( ) ( )u t t t u s ds   .   (5.2) 

 

which has the exact solution ( ) sin(2 )u t t . We applied the CAS wavelet approach and solved Eq. (5.2), we 

get the CAS wavelet coefficients ‘Y ’and substitute in ( ) ( ),Tu t Y t;  we obtain the approximate solution 

with exact solutions. Error analysis is compared with existing method is shown in table 3. 
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Example 5.3 Next, consider [15], 
1

2 2

0
( ) sin(2 ) ( ) ( )u t t t t s s u s ds        (5.3) 

which has the exact solution ( ) sin(2 )u t t . Solving Eq. (5.3), we get the CAS wavelet coefficients by using 

the present method and substitute in ( ) ( ),Tu t Y t;  we obtain the approximate solution with exact 

solution. Error analysis is compared with existing method is shown in table 3. 

Example 5.4 Next, consider [15], 
1

3 2 2 2

0
( ) 2 3 ( ) ( )u t t t t t t s s u s ds          (5.4) 

solving Eq. (5.4) , we get the CAS wavelet coefficients by using the present method and substitute in 

( ) ( ),Tu t Y t;  we obtain the approximate solution with exact solutions 
3 2( ) 2 3u t t t t    . Error 

analysis is compared with existing method is shown in table 3.
  

 
Table 3: Comparison of the error analysis 

N 

Example 5.2 Example 5.3 Example 5.4 

Method [15] 
CAS 

Wavelet 
Method [15] 

CAS 

Wavelet 
Method [15] 

CAS 

Wavelet 

4 2.84e-02 6.66e-16 2.84e-02 1.11e-16 1.33e-10 0 

8 2.38e-03 4.99e-16 2.38e-03 3.33e-16 3.79e-10 2.77e-17 

16 2.09e-04 4.44e-16 2.10e-04 4.44e-16 3.26e-10 4.16e-17 

32 1.20e-04 7.77e-16 2.00e-04 5.55e-16 4.83e-10 4.16e-17 

 

Example 5.5 Next, consider the Volterra integral equation of the second kind [20], 

0
( ) sin( ) ( ) ( ) , 0 1

t

u t t t s u s ds t        (5.5) 

which has the exact solution 
1

( ) (sin sinh ).
2

u t t t 
 

Where ( ) sin( )f t t  and kernel 2 ( , ) ( )k t s t s  . 

Firstly, we approximate ( ) ( ),Tf t X t; and ( ) ( ),Tu t Y t;   

Next, approximate the kernel function as: 2

2( , ) ([0,1] [0,1])k t s L 
 

  2 2( , ) ( ) ( ),Tk t s t K s ;         
 

where 2K  is 2 2k kM M matrix, with 
2 2[ ] ( ( ),( ( , ), ( ))).ij i jK H t k t s H s

 

   
1 1

2 2( ) ( , ) ( )TK t k t s s
 

     ;
 

 Next, substituting the ( )f t , ( )u t , and 2 ( , )k t s in Eq. (5.5) using the collocation point, we get the system of 

algebraic equations with unknown coefficients for k = 1 and M = 4 (N = 8), as an order 8 8  as follows:
 

 

1

2
0

1

2
0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 

2( ) ,I K Y X    where,
1

0
( ) ( )TI s s ds    is the identity matrix. 

 

where, X = [0.1732   -0.0612   -0.0425   -0.0593    0.4773   -0.0482   -0.0321   -0.0429],  
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2

    0.0391    0.0276    0.0156    0.0166         0         0         0         0

   -0.0166   -0.0156   -0.0055   -0.0078         0         0         0         0

   -0.0156   -0.0055   -0.0078   -0.0

K 

055         0         0         0         0

   -0.0276   -0.0078   -0.0055   -0.0156         0         0         0         0

    0.2500    0.0442    0.0313    0.0442    0.0391    0.0276    0.0156    0.0166

   -0.0442   -0.0000   -0.0000   -0.0000   -0.0166   -0.0156   -0.0055   -0.0078

   -0.0312    0.0000    0.0000    0.0000   -0.0156   -0.0055   -0.0078   -0.0055

   -0.0442    0.0000         0    0.0000   -0.0276   -0.0078   -0.0055   -0.0156

 
 
 
 
 
 
 
 
 
 
 
  

 

 

Y = [0.1767   -0.0625   -0.0442   -0.0625    0.5318   -0.0631   -0.0448   -0.0636]  

 

By solving this system of equations, we obtain the CAS wavelet coefficients ‘Y’ and substituting these 

coefficients in ( ) ( ),Tu t Y t;  we get the approximate solution ( )u t as shown in table 4. Maximum error 

analysis is compared with existing methods is shown in table 4.
  

 
Table 4: Numerical results of the example 5.5 

t Exact CAS 

    0.0625 0.0625 0.0625 

    0.1875 0.1875 0.1874 

    0.3125 0.3125 0.3123 

    0.4375 0.4376 0.4373 

    0.5625 0.5630 0.5626 

    0.6875 0.6888 0.6883 

    0.8125 0.8155 0.8149 

    0.9375 0.9435 0.9428 

 
Table 5: Maximum error analysis of the example 5.5 

N max (HW)E
 max (LW)E

 max (BW)E  max (CAS)E
 

8 2.42e-02 2.07e-03 3.18e-03 7.11e-03 

16 6.52e-03 5.38e-04 5.24e-04 1.85e-04 

32 1.69e-03 1.36e-04 1.32e-04 4.74e-05 

64 4.32e-04 3.43e-05 3.40e-05 1.19e-05 

128 1.09e-04 8.60e-06 8.58e-06 3.01e-06 

 

Example 5.6 Next, consider the Fredholm integro-differntial equation [22], 
1

0

''( ) exp( ) ( ) , (0) 1, '(0) 1, 0 1u t t t t su s ds u u t          (5.6) 

which has the exact solution ( ) exp( ).u t t
 

Integrating twice Eq. (5.6) w.r.t  t, we get Fredholm integral equation, 
13 3

0

( ) exp( ) ( ) ,
6 6

t t
u t t su s ds   
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Solving above equation using the proposed method, we get CAS wavelet coefficients and substituting these 

coefficients in ( ) ( ).Tu t Y t;  Maximum error analysis is compared with existing method is shown in table 

6.  
Table 6: Maximum error analysis of the example 5.6 

N max (HW)E
 max (CAS)E

 
8 3.07e-03 4.09e-04 

16 8.48e-04 1.13e-04 

32 2.22e-04 2.96e-04 

64 5.69e-05 7.60e-06 

128 1.44e-05 1.92e-06 

 

Example 5.7 Next, consider the Volterra integro-differential equation [22],  

0

'( ) 1 ( ) , (0) 0, 0 1

t

u t u s ds u t        (5.7) 

which has the exact solution ( ) sinh( ).u t t
 

Integrating Eq. (5.7) w.r.t  t, we get Volterra integral equation, 

0

( ) ( ) ( ) ,

t

u t t t s u s ds  
 

We applied the CAS wavelet approach and solved Eq. (5.7) yields the approximate value of 𝑢(𝑡)
 
with the help 

of CAS wavelet coefficients. Maximum error analysis is shown in table 7 are compared with existing methods. 

 
Table 7: Maximum error analysis of the example 5.7 

N max (HW)E
 max (LW)E

 max (BW)E  max (CAS)E
 

8 1.13e-02 2.38e-03 4.05e-03 8.97e-04 

16 3.03e-03 6.19e-04 6.92e-04 2.37e-04 

32 7.85e-04 1.57e-04 1.52e-04 6.10e-05 

64 1.99e-04 3.95e-05 3.92e-05 1.54e-05 

128 5.04e-05 9.91e-06 9.89e-06 3.89e-06 

 

Example 5.8 Next, consider the Volterra-Fredholm integral equation [23],  

1

0 0

1 1 1
( ) cos( ) cos(2 ) sin ( ) ( ) cos( ) ( ) , 0 1

2 4 4

t

u t t t t t s u s ds t s u s ds t
 

          
 

 
 (5.8) 

which has the exact solution ( ) sin( ).u t t  Solving Eq. (5.8) using the proposed method, we get CAS wavelet 

coefficients. Maximum error analysis is shown in table 5 and compared with the existing methods. 

Let us approximate ( )f t , ( )u t , 1 2( , )and ( , )k t s k t s as given in Eq. (3.5), Eq. (3.9) and Eq. (3.14) using 

the collocation points, we get an system of N equations with N unknowns,  

i.e., 
1 2( )I K K Y X                 where, I is an identity matrix, 

we find,  X = [-0.1177   -0.0474   -0.0330   -0.0468    0.1146   -0.0353   -0.0224   -0.0287], 
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1

    0.4903   -0.0027    0.0000    0.0027    0.4303    0.0185    0.0147    0.0233

   -0.0027    0.0039    0.0027    0.0039   -0.0233    0.0034    0.0023    0.0032

    0.0000    0.0027    0.0019    0.0

K 

027   -0.0147    0.0025    0.0017    0.0023

    0.0027    0.0039    0.0027    0.0039   -0.0185    0.0036    0.0025    0.0034

    0.4303   -0.0233   -0.0147   -0.0185    0.4903   -0.0027    0.0000    0.0027

    0.0185    0.0034    0.0025    0.0036   -0.0027    0.0039    0.0027    0.0039

    0.0147    0.0023    0.0017    0.0025    0.0000    0.0027    0.0019    0.0027

    0.0233    0.0032    0.0023    0.0034    0.0027    0.0039    0.0027    0.0039

 
 
 
 
 
 
 
 
 
 
 
    

2

    0.0386    0.0271    0.0153    0.0164         0         0         0         0

   -0.0164   -0.0155   -0.0054   -0.0078         0         0         0         0

   -0.0153   -0.0053   -0.0077   -0.0

K 

054         0         0         0         0

   -0.0271   -0.0073   -0.0053   -0.0155         0         0         0         0

    0.2351    0.0369    0.0269    0.0395    0.0386    0.0271    0.0153    0.0164

   -0.0395    0.0019    0.0012    0.0014   -0.0164   -0.0155   -0.0054   -0.0078

   -0.0269    0.0015    0.0009    0.0012   -0.0153   -0.0053   -0.0077   -0.0054

   -0.0369    0.0023    0.0015    0.0019   -0.0271   -0.0073   -0.0053   -0.0155

 
 
 
 
 
 
 
 
 
 
 
  

 

 

By solving this system we obtain the Hermite wavelet coefficient, 

 

Y = [0.1707   -0.0610   -0.0423   -0.0591    0.4735   -0.0480   -0.0319   -0.0426], 

Then, substituting ( ) ( ),Tu t Y t;
 
we get the approximate solution of Eq. (5.8) are shown in table 8. 

Maximum error analysis is shown in table 9. 

 
Table 8: Numerical results of the example 5.8 

t Exact CAS wavelet 

0.0625 0.0625 0.0596 

0.1875 0.1864 0.1831 

0.3125 0.3074 0.3037 

0.4375 0.4237 0.4195 

0.5625 0.5333 0.5286 

0.6875 0.6346 0.6295 

0.8125 0.7260 0.7205 

0.9375 0.8061 0.8001 

 
Table 9: Maximum error analysis of the example 5.8 

N max (HW)E
 max (LW)E  max (BW)E

 max (CAS)E
 

8 2.66e-02 1.15e-02 5.82e-03 5.99e-03 

16 6.62e-03 2.92e-03 2.60e-03 1.50e-03 

32 1.66e-03 7.38e-04 7.38e-04 3.79e-04 

64 4.19e-04 1.85e-04 1.85e-04 9.53e-05 
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VI. CONCLUSION 
In this paper, we proposed the CAS wavelet collocation method for the numerical solution of integral and 

integro-differential equations. Using the proposed method, these equations are reduced to the system of 

algebraic equations with unknown coefficients. Solving this system of equations we obtain the approximate 

solution with the help of Matlab. Numerical results are compared with exact solutions and existing methods as 

shown in tables. Error analysis shows the accuracy and effectiveness of the present scheme is approached 

through the illustrative examples. 

 

VII. ACKNOWLEDGEMENT 
The authors thank for the financial support of UGC’s UPE Fellowship vide sanction letter D. O. No. F. 14-

2/2008(NS/PE), dated-19/06/2012 and F. No. 14-2/2012(NS/PE), dated 22/01/2013. 

 

VIII. REFERENCES 
[1] Wazwaz A. M., Linear and nonlinear integral equations methods and applications, Springer, 2011. 

[2]  Delves L. M. and Mohammed J. L., Computational Methods for Integral Equations, Cambridge 

University Press, Oxford, 1983. 

[3] Chui C. K., Wavelets: A mathematical tool for signal analysis, in: SIAM Monographs on Mathematical 

Modeling and Computation, SIAM, Philadelphia, Pennsylvania, 1997. 

[4] Beylkin G., Coifman R. and Rokhlin V., Fast wavelet transforms and numerical algorithms I. Commun. 

Pure Appl. Math., 44, 1991, 141–183.  

[5] Lepik Ü. and Tamme E., Application of the Haar wavelets for solution of linear integral equations, Ant. 

Turk–Dynam. Sys. Appl. Proce., 2005, 395–407. 

[6] Lepik Ü., Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul., 68, 

2005, 127-143. 

[7] Lepik Ü., Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comp., 176, 

2006, 324-333. 

[8] Lepik Ü., Application of the Haar wavelet transform to solving integral and differential Equations, 

Proc. Estonian Acad Sci. Phys. Math., 56, 2007, 28-46. 

[9] Lepik Ü. and Tamme E., Solution of nonlinear Fredholm integral equations via the Haar wavelet 

method, Proc. Estonian Acad. Sci. Phys. Math., 56, 2007, 17–27.  

[10] Lepik Ü., Numerical solution of evolution equations by the Haar wavelet method, Appl. Math. 

Comput. 185, 2007, 695–704. 

[11] Lepik Ü., Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comp., 214, 

2009, 468-478. 

[12] Maleknejad K. and Mirzaee F., Numerical solution of linear Fredholm integral equations system by 

rationalized Haar functions method, 80(11), 2003, 1397-1405. 
[13] Maleknejad K. and Mirzaee F., Using rationalized haar wavelet for solving linear integral equations, 

App. Math. Comp., 160, 2005, 579 – 587. 
[14] Maleknejad K., Kajani M. T. and Mahmoudi Y., Numerical solution of linear Fredholm and Volterra 

integral equation of the second kind by using Legendre wavelets, J. Kybernet., 32, 2003, 1530-1539. 
[15] Maleknejad K. and Yousefi M., Numerical solution of the integral equation of the second kind by using 

wavelet bases of Hermite cubic splines, App. Math. Comp., 183, 2006, 134-141. 
[16] Maleknejad K., Lotfi T. and Rostami Y., Numerical computational method in solving Fredholm 

integral equations of the second kind by using Coifman wavelet, App. Math. Comp. 186, 2007, 212-

218. 

[17] Babolian E. and Fattahzadeh F., Numerical computational method in solving integral equations by 

using chebyshev wavelet operational matrix of integration, Appl. Math. Comp., 188, 2007, 1016 -1022. 

[18]  Liang X. Z., Liu M. and Che X., Solving second kind integral equations by Galerkin methods with 

continuous orthogonal wavelets, J. Comp. App. Math., 136, 2001, 149-161. 

[19]  Yousefi S. and Banifatemi A., Numerical solution of Fredholm integral equations by using CAS 

wavelets, App. Math. Comp., 183, 2006, 458-463. 

[20] Blyth W. F., May R. L. and Widyaningsih P., Volterra integral equations solved in fredholm form 

using walsh functions, ANZIAM J., 45, 2004, C269-C282. 

[21] Sahu P. K. and Ray S. S., Legendre wavelets operational method for the numerical solution of 

nonlinear volterra integro-differential equations system, Appl. Math. Comp., 256, 2015, 715-723. 

[22]  Rahman M., Integral equations and their applications, WIT Press, 2007. 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Mundewadi * et al., 7(1): January, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [468] 

[23] Ezzati R., Mokhtaria F. and Maghasedi M., Numerical Solution of Volterra-Fredholm Integral 

Equations with The Help of Inverse and Direct Discrete Fuzzy Transforms and Collocation Technique, 

Int. J. Indus. Math., 4(3), 2012, 221–229.  

[24] Shiralashetti S. C., Mundewadi R. A., Bernoulli wavelet based numerical method for solving fredholm 

integral equations of the second kind, J. Information and Computing Sciences, 11(2), 2016, 111-119. 

 

CITE AN ARTICLE 

Mundewadi, B. A., Mundewadi, R. A., & Kumar, D. S. (n.d.). COSINE AND SINE (CAS) 

WAVELET COLLOCATION METHOD FOR THE NUMERICAL SOLUTION OF INTEGRAL 

AND INTEGRO-DIFFERENTIAL EQUATIONS. INTERNATIONAL JOURNAL OF 

ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 7(1), 455-468. 

http://www.ijesrt.com/

